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1 Introduction

The Poisson algebras appear naturally in the Poisson geometry. The Poisson
manifold is a differential manifold M such that the algebra of smooth functions
over M is equipped with a bilinear map called the Poisson bracket, turning
it into a Poisson algebra. With the development of noncommutative geometry,
noncommutative versions of Poisson algebras have been introduced and
investigated from different perspectives, see, for examples, [3–6,9,10].

In this paper, we follow the notion of noncommutative Poisson algebras
as introduced in [5]. By definition, a Poisson algebra over a field K means a
triple (A, ·, {-,-}), where (A, ·) is an associative K-algebra and (A, {-,-}) is a Lie
algebra over K, such that the Leibniz rule

{a, bc} = {a, b}c + b{a, c},
or equivalently,

{ab, c} = {a, c}b + a{b, c}
holds for all a, b, c ∈ A. We also call (A, ·, {-,-}) a Poisson structure on the
algebra (A, ·) or on the Lie algebra (A, {-,-}). This version of Poisson algebras
has been widely investigated by many mathematicians recently, for examples,
[7,8,11]. Notice that as an associative algebra, A is not required to be
commutative.
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There are two natural ways to construct the Poisson algebras, say from
given associative algebras [11] and from given Lie algebras [7]. Clearly, any
noncommutative K-algebra (A, ·) has a natural standard Poisson structure
(A, ·, λ[-,-]), where [-,-] is the commutator, i.e.,

[a, b] = ab − ba, ∀ a, b ∈ A,

and λ ∈ K.
In fact, all Poisson structures on many known noncommutative associative

algebras are standard, for example, on the simple algebras [7], on the algebras
of upper triangular matrices Tn(K) [7], on the poset subalgebras of M∞(C) [8],
and on the noncommutative prime algebras [6]. It seems that the first example
of noncommutative, non-standard Poisson algebras were obtained in [11] via the
quiver technique by considering the so-called inner and outer Poisson structures
on path algebras.

In this paper, we determine the Poisson structures on basic cycles
completely. In Section 2, we classify all Poisson structures on the path
algebra of a basic cycle. Section 3 deals with the path algebra of a basic cycle
with any relation. As we show, all Poisson structures on basic cycles are inner
in the sense of [11].

Throughout the paper, K is a field of characteristic 0. For unexplained
notations on quivers, we refer to [1,2].

2 Poisson structures on a basic cycle

Let (A, ·, {-,-}) be a Poisson algebra. For a ∈ A, the linear transformation
{a, -} : A → A is called the Hamiltonian of a and denoted by ham(a). The
Leibniz rule just says that ham(a) is a derivation of the associative algebra
(A, ·). A Poisson algebra (A, ·, {-,-}) is said to be inner if ham(a) is an inner
derivation of (A, ·) (i.e., ham(a) = [a′, -] for some a′ ∈ A) for all a ∈ A.

Recall a characterization of inner Poisson structure in [11]. Denote by P(A)
the set of all K-linear transformations g of A satisfying

[g(x), y] = [x, g(y)], (2.1)

[g(x), g(y)] − g([g(x), y]) ∈ Z(A) (2.2)

for any x, y ∈ A, and
Z(A) ⊆ Ker g. (2.3)

Lemma 2.1 [11] Let (A, ·) be an associative algebra. Let (A, ·, {-,-}) be an
inner Poisson algebra on (A, ·). Then there exists some K-linear transformation
g of A satisfying (2.1)–(2.3) such that

ham(a) = [g(a), -], ∀ a ∈ A.
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Conversely, let g be a K-linear transformation of A satisfying (2.1) and
(2.2). Then g induces an inner Poisson structure (A, ·, {-,-}) on A, whose Lie
bracket is given by

{a, b} = [g(a), b], ∀ a, b ∈ A.

We also need the following lemma for later use.

Lemma 2.2 [11] Let (A, ·, {-,-}) be a Poisson algebra, and let {e1, . . . , en} be
a set of pairwise orthogonal idempotents of (A, ·). Then

(i) {ei, ej} = 0 for any 1 � i, j � n.

(ii) If x ∈ eiAej , y ∈ epAeq, and j �= p, q �= i, then

{x, y} = eiep{x, y}eqej .

In particular, if in addition i �= p or j �= q, then

{eiAej , epAeq} = 0.

Recall that a quiver Q = (Q0, Q1, s, t) is an oriented graph, where Q0 is
the set of vertices {e1, . . . , en}, Q1 is the set of arrows, and for any arrow α,
s(α) and t(α) are the source and target vertices of α, respectively. Denote by
KQ the path algebra of Q. Let Q be a finite quiver, and let I be an admissible
ideal of KQ. We call the pair (Q, I) a bound quiver and KQ/I the bound quiver
algebra of (Q, I), see [1, Definition 2.1]. A famous result of Gabriel says that
any finite dimensional elementary algebra can be realized as a bound quiver
algebra, see, for instance, [1, Theorem 3.7]. A Poisson algebra (A, ·, {-,-}) is
said to be a quiver Poisson algebra of a quiver Q if as an associative algebra, A
is either the path algebra or a bound quiver algebra of Q. The following result
is easy.

Lemma 2.3 Let (A, ·, {-,-}) be a quiver Poisson algebra of a quiver Q =
(Q0, Q1). Then

(i) {e, α} = 0 if e �= es(α), et(α) for any e ∈ Q0, α ∈ Q1.

(ii) {es(α), α} = {α, et(α)} ∈ es(α)Aet(α) if s(α) �= t(α).

Proof (i) follows from Lemma 2.2 (ii) easily, and we need only to prove (ii).
Consider e ∈ Q0 and α ∈ Q1 with s(α) �= t(α). By Leibniz rule and Lemma 2.2
(i), we have

{e, α} = {e, es(α)αet(α)} = es(α){e, α}et(α) ∈ es(α)Aet(α).

Since s(α) �= t(α), we get

0 = {α, es(α)et(α)} = es(α){α, et(α)} + {α, es(α)}et(α),

and hence,
{α, et(α)} = {es(α), α}. �
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Now, we focus on basic cycles. Recall that a basic cycle of length n, denoted
by Cn, is an oriented graph with n vertices e1, . . . , en and a unique arrow αi

from ei to ei+1 for each 1 � i � n, here, we take the indices modulo n. Denote
by ps

i the unique path in Cn of length s and starting at ei, in particular, we
have p0

i = ei, p1
i = αi. Clearly, the path algebra KCn has a K-basis {ps

i | s �
0; i = 1, . . . , n} and the multiplication is given by

ps
ip

t
j = δi+s,jp

s+t
i ,

where δi+s,j is Kronecker’s delta. Since KCn is generated by vertices and arrows,
by Leibniz rule, a Poisson bracket on KCn is uniquely determined by {ps

i , p
t
j},

1 � i, j � n and s, t = 0, 1.

Remark 2.4 For n = 1, the path algebra KCn is a polynomial algebra in one
variable. It is well known that the only Poisson structure on KCn is the trivial
one. The reason is that for a Poisson algebra, 1 is always in the center of the
Lie algebra.

Lemma 2.5 Let (A, ·, {-,-}) be a quiver Poisson algebra of the basic cycle Cn,
where n � 2 is a given integer. Then

(i) {αi, αj} = 0, if i − j �= ±1;
(ii) αi−1{ei, αi} = {αi−1, ei}αi ∈ ei−1Aei+1.

Proof (i) It is obvious by Lemma 2.2 (ii).
(ii) By Lemma 2.2 (ii) and Leibniz rule, we have

0 = {ei, αi−1αi} = αi−1{ei, αi} + {ei, αi−1}αi.

Clearly,
αi−1{ei, αi} = {αi−1, ei}αi ∈ ei−1Aei+1. �

Combined with Lemma 2.3, we obtain the following result, which is crucial
in determining Poisson structures on KCn. Note that by Lemma 2.3,

{e1, α1} =
∑

0�l�q

λlp
ln+1
1

for some integer q � 0 and λl ∈ K.

Corollary 2.6 Let (KCn, ·, {-,-}) be a Poisson algebra, and let

{e1, α1} =
∑

0�l�q

λlp
ln+1
1 ,

where q � 0 is an integer and λl ∈ K. Then

{ei, αi} =
∑

0�l�q

λlp
ln+1
i , i = 2, . . . , n.
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Proof By Lemma 2.3 (ii), we may assume that

{ei, αi} =
∑

0�l�qi

λ
(l)
i pln+1

i ,

where for i = 1, . . . , n, qi � 0 is an integer determined by i and λ
(l)
i ∈ K. Again

by Lemmas 2.3 (ii) and 2.5 (ii), we have

αi−1{ei, αi} = {αi−1, ei}αi = {ei−1, αi−1}αi, i = 1, . . . , n.

Hence, ∑

0�l�qi

λ
(l)
i pln+2

i−1 = αi−1

∑

0�l�qi

λ
(l)
i pln+1

i

=
∑

0�l�qi−1

λ
(l)
i−1p

ln+1
i−1 αi

=
∑

0�l�qi−1

λ
(l)
i−1p

ln+2
i−1 .

It follows that λ
(l)
1 = · · · = λ

(l)
n = λl for any l, and q1 = · · · = qn = q. �

Proposition 2.7 Let (KCn, ·, {-,-}) be a Poisson algebra with n � 2. Then
there exists an integer q � 0 and a vector (λ0, λ1, . . . , λq) ∈ K

q+1 such that

{ps
i , p

t
j} =

∑

0�l�q

λl(pln+s
i pt

j − pln+t
j ps

i ), ∀ i, j = 1, . . . , n, ∀ s, t � 0.

Proof By Lemma 2.3 (ii), we may assume that

{e1, α1} =
∑

0�l�q

λlp
ln+1
1 .

If n = 2, then
{α1, α2} = {α1, e2}α2 − {α2, e1}α1.

If n � 3, then, by Lemma 2.5 and Corollary 2.6, it is easy to check that

{αi, αj} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
0�l�q

λlp
ln+2
i , j = i + 1;

− ∑
0�l�q

λlp
ln+2
i−1 , j = i − 1;

0, otherwise.

In any case, we have

{αi, αj} =
∑

0�l�q

λl(pln+1
i αj − pln+1

j αi), ∀ i, j = 1, . . . , n.
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By the Leibniz rule, we have

{ps
i , p

t
j} = {αiαi+1 · · ·αi+s−1, αjαj+1 · · ·αj+t−1}

=
∑

i�l�i+s−1

αi · · ·αl−1{αl, αjαj+1 · · ·αj+t−1}αl+1 · · ·αi+s−1

=
∑

i�l�i+s−1
j�k�j+t−1

αi · · ·αl−1αj · · ·αk−1{αl, αk}αk+1 · · ·αj+t−1αl+1 · · ·αi+s−1

= αi · · ·αi+s−2{αi+s−1, αj}αj+1 · · ·αj+t−1

− αj · · ·αj+t−2{αj+t−1, αi}αi+1 · · ·αi+s−1

= ps−1
i

( ∑

0�l�q

λlp
ln+1
i+s−1

)
pt

j − pt−1
j

( ∑

0�l�q

λlp
ln+1
j+t−1

)
ps

i

=
∑

0�l�q

λl(pln+s
i pt

j − pln+t
j ps

i ). �

Now, applying Proposition 2.7, we obtain all Poisson structures on the basic
cycle Cn, which gives the main result of this section.

Theorem 2.8 Let Cn be a basic cycle with n � 2, and let KCn be the path
algebra. Then, for any Poisson structure (KCn, ·, {-,-}) on KCn, there exists a
K-linear transformation g : KCn → KCn satisfying (2.1) and (2.2) such that

ham(x) = [g(x), -], ∀ x ∈ KCn.

Consequently, any Poisson structure on a basic cycle is inner.
Conversely, for any integer q � 0 and any vector (λ0, λ1, . . . , λq) ∈ K

q+1,
the K-linear transformation

g : KCn → KCn,

ps
i �→

∑

0�l�q

λlp
ln+s
i

induces a Poisson structure on KCn, and the Lie bracket is given by

{ps
i , p

t
j} =

∑

0�l�q

λl(pln+s
i pt

j − pln+t
j ps

i ), ∀ i, j = 1, . . . , n, ∀ s, t � 0.

Proof Let (KCn, ·, {-,-}) be a given Poisson algebra. We may define a K-linear
transformation g : KCn → KCn by setting

g(ps
i ) =

∑

0�l�q

λlp
ln+s
i

for any 1 � i � n and s � 0, here q and λl’s are determined by (KCn, ·, {-,-})
as given in Proposition 2.7. Then
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[g(ps
i ), p

t
j ] =

[ ∑

0�l�q

λlp
ln+s
i , pt

j

]

=
∑

0�l�q

λl(pln+s
i pt

j − pt
jp

ln+s
i )

=
∑

0�l�q

λl(pln+s
i pt

j − pln+t
j ps

i )

= {ps
i , p

t
j}, ∀ i, j = 1, . . . , n, ∀ s, t � 0.

It follows that
{x, -} = [g(x), -], ∀ x ∈ KCn,

and hence, (KCn, ·, {-,-}) is inner.
For the converse part, it suffices to show that g satisfies (2.1) and (2.2). In

fact, by the definition of g, we have

[g(ps
i ), p

t
j ] = [ps

i , g(pt
j)],

[g(ps
i ), g(pt

j)] = g[g(ps
i ), p

t
j ],

∀ i, j = 1, . . . , n, ∀ s, t � 0.

By Lemma 2.1, we know that g gives a Poisson structure on KCn, and the
bracket is clear. �

3 Poisson structures on a basic cycle with relations

Let A = KCn/I be the bound quiver algebra of the basic cycle Cn (n � 2) with
an admissible ideal I. One can easily show that an admissible ideal must be
monomial for a basic cycle. Moreover, for any vertex ei, there exists a maximal
li such that pli

i is not in I. Such an li always exists since I is admissible and pl
i ∈ I

for sufficiently large l. Clearly, I is generated by the paths pli+1
i , 1 � i � n.

Without loss of generality, we may assume that

l1 = min
1�i�n

li, li − 1 = nqi + ri, qi ∈ N, 0 � ri � n − 1, 1 � i � n.

By definition, we have the following property.

Proposition 3.1 Let A, I, li, qi, and ri be as above, and assume that l1 =
min1�i�n li. Then q1 � qi � q1 + 1. Moreover, ri � r1 if qi = q1, and ri �
r1 − i + 1 if qi = q1 + 1.

Proof Since pli
i is the longest non-zero path in A with the source i, we have

li � li+1 + 1, and hence, l1 � li � l1 + n − i + 1 by the minimality of l1, or
equivalently,

q1 +
r1 − ri

n
� qi � q1 + 1 +

r1 − ri − i + 1
n

. (3.1)

Clearly,
−(n − 1) � r1 − ri � n − 1
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for each 0 � ri � n − 1. Therefore, we have q1 � qi � q1 + 1. The rest part
follows easily from inequality (3.1). �

Similar to the path algebra case, a Poisson structure on KCn/I is uniquely
determined by {ps

i , p
t
j}, s, t = 0, 1, 1 � i, j � n. Let E denote the set of arrows

{αi | ri = 0}. Set V = {ei | qi = q1} if r1 �= 0, and V = ∅ if r1 = 0 for
consistency. Remove the arrows in E and the vertices in V from the quiver
Cn, and assume that the remained subquiver has m connected components, say
P1, P2, . . . , Pm. Notice that when a vertex is removed from a quiver, all arrows
incident to it will be removed automatically. Clearly, we have the following
fact.

Lemma 3.2 Let A, I, li, qi, ri (1 � i � n), and Pk (1 � k � m) be as
above.

(i) If r1 = 0 and pnq1+r
i �= 0 for some r � 2, then ei, ei+1, . . . , ei+r−1 belong

to the same component Pk for some k.

(ii) If r1 �= 0 and p
n(q1+1)+r
i �= 0 for some r � 2, then ei, ei+1, . . . , ei+r−1

belong to the same component Pk for some k.

Proof If r1 = 0 and pnq1+r
i �= 0, r � 2, then pnq1+2

k �= 0 for i � k < i+r−1, and
hence, αk /∈ E. Therefore, ei, ei+1, . . . , ej+r−1 belong to the same component
Pk for some k.

The case r1 �= 0 is similarly proved. �

By Lemmas 2.3 and 2.5, we may assume that

{ei, αi} =
∑

0�l�qi

λ
(l)
i pln+1

i

for some λ
(l)
i ∈ K. By using the similar argument, we obtain the following

analog of Corollary 2.6.

Lemma 3.3 Let A, I, li, qi, ri (1 � i � n), and Pk (1 � k � m) be as
above. Let (KCn/I, ·, {-,-}) be a Poisson algebra, and for each i, let

{ei, αi} =
∑

0�l�qi

λ
(l)
i pln+1

i .

(i) If r1 = 0, then λ
(l)
1 = · · · = λ

(l)
n for 0 � l � q1 − 1, and λ

(q1)
i = λ

(q1)
j

when ei and ej are in the same component Pk for some k.

(ii) If r1 �= 0, then λ
(l)
1 = · · · = λ

(l)
n for 0 � l � q1, and λ

(q1+1)
i = λ

(q1+1)
j

when ei and ej are in the same component Pk for some k.

Proof By Lemmas 2.3 (ii) and 2.5 (ii), we have

αi−1{ei, αi} = {αi−1, ei}αi = {ei−1, αi−1}αi,
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and hence, ∑

0�l�qi

λ
(l)
i pln+2

i−1 = αi−1

∑

0�l�qi

λ
(l)
i pln+1

i

=
∑

0�l�qi−1

λ
(l)
i−1p

ln+1
i−1 αi

=
∑

0�l�qi−1

λ
(l)
i−1p

ln+2
i−1 .

If r1 = 0, then qk = q1 for all k, and pln+2
i �= 0 for 0 � l � q1 − 1 by

Proposition 3.1. By comparing the coefficients in the above equality, we have
λ

(l)
i−1 = λ

(l)
i for all 0 � l � q1 − 1 and 1 � i � n. Now, consider the case l = q1.

Suppose i, i − 1 ∈ Pk for some 1 � k � m. By definition of Pk, we know that

li−1 = nq1 + ri−1 + 1 � nq1 + 2

since ri−1 � 1, and hence, pnq1+2
i−1 �= 0. By comparing the coefficients again, we

have λ
(q1)
i = λ

(q1)
i−1 . Since each Pk is a connected subquiver of Cn, vertices in Pk

are connected by a sequence of arrows in Cn, which implies that λ
(q1)
i = λ

(q1)
j

for any i, j ∈ Pk.
The case r1 �= 0 is proved similarly, and we omit it here. �

Theorem 3.4 Under the same assumption as in Lemma 3.2, let (KCn/I, ·,
{-,-}) be a Poisson algebra.

(i) If r1 = 0, then there exists a vector (λ0, . . . , λq1−1, μ1, . . . , μm) ∈ K
q1+m

such that

{ps
i , p

t
j} =

∑

0�l�qi+s

λ
(l)
i+sp

ln+t
i ps

j −
∑

0�l�qj+t

λ
(l)
j+tp

ln+s
j pt

i, (3.2)

where λ
(l)
i = λl for all l = 0, 1, . . . , q1 − 1, and λ

(q1)
i = μk for all i ∈ Pk, k =

1, . . . ,m.

(ii) If r1 �= 0, then there exists a vector (λ0, . . . , λq1 , μ1, . . . , μm) ∈ K
q1+m+1

such that

{ps
i , p

t
j} =

∑

0�l�qi+s

λ
(l)
i+sp

ln+s
i pt

j −
∑

0�l�qj+t

λ
(l)
j+tp

ln+s
j pt

i, (3.3)

where λ
(l)
i = λl for all l = 0, 1, . . . , q1, and λq1+1

i = μk for all i ∈ Pk, k =
1, . . . ,m.

Proof We only prove (i), and the proof of (ii) is similar. By Lemma 3.2, we
may assume that

{ei, αi} =
∑

1�l�qi

λ
(l)
i pln+1

i ,
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where λ
(l)
i = λl for 0 � l � q1 − 1, and λ

(q1)
i = μk for i ∈ Pk, k = 1, . . . ,m.

By the similar argument in the proof of Theorem 2.8, we obtain equality (3.2),
which completes the proof. �

By Theorem 3.4, we conclude that all Poisson structures on KCn/I are
inner.

Theorem 3.5 Let A = KCn/I be a bound quiver algebra of Cn. Then for
any Poisson structure (A, ·, {-,-}) on A, there exists a K-linear transformation
g : A → A satisfying (2.1) and (2.2) such that

ham(x) = [g(x), -], ∀ x ∈ A.

Consequently, any Poisson structure on a basic cycle is inner.
Conversely, let li, qi, ri (1 � i � n), and Pk (1 � k � m) be as above.
(i) If r1 = 0, then for any vector (λ0, . . . , λq1−1, μ1, . . . , μm) ∈ K

q1+m, there
exists a Poisson structure on KCn/I such that the Lie bracket is given by (3.2).

(ii) If r1 �= 0, then for any vector (λ0, . . . , λq1 , μ1, . . . , μm) ∈ K
q1+m+1, there

exists a Poisson structure on KCn/I such that the Lie bracket is given by (3.3).

Proof Using the same assumption in Lemma 3.3, we only prove that it holds
if r1 = 0, and the proof of the case r1 �= 0 is similar. By Theorem 3.4, we know
that each Poisson structure on A corresponds to a vector (λ0, . . . , λq1−1, μ1, . . . ,
μk) if r1 = 0. Let g : A → A be the linear transformation given by

g(ps
i ) =

∑

0�l�qi+s

λ
(l)
i+sp

ln+s
i (3.4)

for 1 � s � li, where λ
(l)
i = λl for 0 � l � q1 − 1; λ

(q1)
i = μk for all i ∈ Pk, k =

1, . . . ,m; and

g(ei) = −
( ∑

0�l�qi−1

λ
(l)
i−1p

ln
i−1 +

∑

0�l�qi

λ
(l)
i pln

i+1

)
, (3.5)

where q′i = max{qi, qi−1} for 1 � i � n.
It is direct to check that

{ps
i , -} = [g(ps

i ), -], ∀ s = 0, 1, . . . , li, ∀ i = 1, . . . , n,

[g(ps
i ), p

t
j ] = [ps

i , g(pt
j)],

[g(ps
i ), g(pt

j)] = g([g(ps
i ), p

t
j ]),

∀ i, j = 1, . . . , n, ∀ s, t � 0,

by Lemmas 3.2, 3.3, and Theorem 3.4.
Conversely, for any vector (λ0, . . . , λq1−1, μ1, . . . , μm) ∈ K

q1+m, define the
K-linear transformation g : A → A given by (3.4) and (3.5), and again one
checks that g satisfies (2.1) and (2.2). Therefore, g induces an inner Poisson
structure on A. �
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Corollary 3.6 Let (KCn/I, ·, {-,-}) be a Poisson algebra. If Rn ⊂ I ⊂ R3,
then KCn/I is a standard Poisson algebra, where R is the ideal generated by
all arrows.

Proof Clearly, if Rn ⊂ I ⊂ R3, then qi = 0 for all i = 1, 2, . . . , n and ri > 0.
By Theorem 3.4 (i), there exists a unique parameter λ0 such that

{ps
i , p

s
j} = λ0[ps

i , p
s
j ], ∀ i, j = 1, . . . , n, ∀ s, t � 0.

It follows that KCn/I has only standard Poisson structure. �
Example 3.7 Let C10 be the basic cycle with 10 vertices, and let I be the
admissible ideal generated by p10

1 , p12
4 , and p12

7 . In this case,

l1 = 9, l2 = 13, l3 = 12, l4 = 11, l5 = 13, l6 = 12,

l7 = 11, l8 = 12, l9 = 11, l10 = 10, q1 = 0, r1 = 8.

Clearly, E = {α4, α7, α9} and V = {e1, e10} (see Figure 1).

Fig. 1 Basic cycle C10 with black vertices in V and dashed arrows in E

Removing the sets E and V from C10, we get three connected components

{2 → 3 → 4}, {5 → 6 → 7}, {8 → 9}.
By Theorem 3.5, we know that any Poisson structure on KQ/I is determined
by a vector (λ0, μ1, μ2, μ3) ∈ K

4. Conversely, for any given 4-dimensional vector
(λ0, μ1, μ2, μ3), we can obtain a Poisson structure on KQ/I with the Lie bracket
induced by

{ei, αi} = λ0αi + λ
(1)
i p11

i ,
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where

λ
(1)
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i = 1, 10,
μ1, i = 2, 3, 4,
μ2, i = 5, 6, 7,
μ3, i = 8, 9.

Example 3.8 Let A = KCn/R2, where Q is a basic cycle with n vertices and
R is the Jacobson radical of KCn. By Theorem 3.4, we know that the Poisson
structure on A is determined by a vector (μ1, . . . , μn) ∈ K

n, with the Lie bracket
induced by

{ei, αi} = μiαi, i = 1, . . . , n.
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